Start / Zadania maturalne / Funkcje trygonometryczne Zadania – Funkcje trygonometryczne Przygotowanie do matury – Funkcje trygonometryczne – funkcje matematyczne, wyrażające między innymi stosunki między długościami boków trójkąta prostokątnego względem miar jego kątów wewnętrznych, będące przedmiotem badań trygonometrii.
Matura podstawowa z matematyki - kurs - trygonometriaSzybka nawigacja do zadania numer: 5 10 15 20 25 30 35 .Kąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{3}{4}\). Wtedy \(\sin \alpha \) jest równy A.\( \frac{1}{4} \) B.\( \frac{\sqrt{3}}{4} \) C.\( \frac{\sqrt{7}}{4} \) D.\( \frac{7}{16} \) CKąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{3}{7}\). Wtedy A.\( \sin \alpha =\frac{2\sqrt{10}}{7} \) B.\( \sin \alpha =\frac{\sqrt{10}}{7} \) C.\( \sin \alpha =\frac{4}{7} \) D.\( \sin \alpha =\frac{3}{4} \) ASinus kąta ostrego \(\alpha \) jest równy \(\frac{3}{7}\). Wówczas cosinus tego kąta jest równy: A.\( \frac{4}{7} \) B.\( \frac{7}{4} \) C.\( \frac{2\sqrt{7}}{7} \) D.\( \frac{2\sqrt{10}}{7} \) DKąt \( \alpha \) jest ostry i \( \sin \alpha =\frac{1}{4} \). Wówczas A.\(\cos \alpha \lt \frac{3}{4} \) B.\(\cos \alpha =\frac{3}{4} \) C.\(\cos \alpha =\frac{\sqrt{13}}{4} \) D.\(\cos \alpha >\frac{\sqrt{13}}{4} \) DKąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{4}{5}\). Oblicz \(\sin \alpha \) i \(\operatorname{tg} \alpha \).\(\sin \alpha =\frac{3}{5}\), \(\operatorname{tg} \alpha =\frac{3}{4}\)Kąt \(\alpha \) jest ostry oraz \(\sin \alpha =\frac{2}{5}\). Wówczas A.\( \cos \alpha =\sin \alpha \) B.\( \cos \alpha >\sin \alpha \) C.\( \cos \alpha \lt \sin \alpha \) D.\( \cos \alpha =1-\sin \alpha \) BKąt \(\alpha \) jest ostry i \(\sin \alpha =0{,}6\). Wówczas A.\( \cos \alpha =0{,}8 \) i \(\operatorname{tg} \alpha =0{,}4\) B.\( \cos \alpha =0{,}4 \) i \(\operatorname{tg} \alpha =1{,}5\) C.\( \cos \alpha =0{,}8 \) i \(\operatorname{tg} \alpha =0{,}75\) D.\( \cos \alpha =0{,}4 \) i \(\operatorname{tg} \alpha =0{,}75\) CKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{7}{13}\). Wtedy \(\operatorname{tg} \alpha \) jest równy A.\( \frac{7}{6} \) B.\( \frac{7\cdot 13}{120} \) C.\( \frac{7}{\sqrt{120}} \) D.\( \frac{7}{13\sqrt{120}} \) CKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =\frac{12}{5}\). Wówczas \(\cos \alpha \) jest równy: A.\( \frac{5}{12} \) B.\( \frac{5}{13} \) C.\( \frac{10}{13} \) D.\( \frac{12}{13} \) BKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =\frac{5}{12}\). Oblicz \(\cos \alpha \).\(\cos \alpha =\frac{12}{13}\)Przyprostokątne trójkąta prostokątnego mają długości \(3\) i \(9\). Sinus najmniejszego kąta tego trójkąta jest równy: A.\( \frac{3\sqrt{10}}{10} \) B.\( \frac{1}{3} \) C.\( \frac{\sqrt{10}}{10} \) D.\( \frac{\sqrt{10}}{30} \) CKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =2\). Oblicz \(\frac{\sin \alpha -\cos \alpha }{\sin \alpha +\cos \alpha }\).\(\frac{1}{3}\)Przyprostokątne trójkąta prostokątnego mają długości \(8\) i \(6\). Sinus większego z kątów ostrych tego trójkąta jest równy A.\( \frac{3}{5} \) B.\( \frac{3}{4} \) C.\( \frac{4}{5} \) D.\( \frac{4}{3} \) CW trójkącie równoramiennym wysokość jest dwa razy dłuższa od podstawy. Wynika stąd, że sinus kąta przy podstawie wynosi: A.\( \frac{\sqrt{17}}{17} \) B.\( \frac{\sqrt{5}}{5} \) C.\( \frac{4\sqrt{17}}{17} \) D.\( \frac{1}{17} \) CLiczba \(\sin 60^\circ +\cos 60^\circ \) jest równa A.\( 1 \) B.\( -\frac{\sqrt{3}}{2} \) C.\( \frac{\sqrt{3}+1}{2} \) D.\( \frac{2\sqrt{3}-3}{6} \) CLiczba \( \operatorname{tg} 30^\circ -\sin 30^\circ \) jest równa A.\(\sqrt{3}-1 \) B.\(-\frac{\sqrt{3}}{6} \) C.\(\frac{\sqrt{3}-1}{6} \) D.\(\frac{2\sqrt{3}-3}{6} \) DKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{3}{4}\). Wartość wyrażenia \(2-\cos ^2\alpha \) jest równa A.\( \frac{25}{16} \) B.\( \frac{3}{2} \) C.\( \frac{17}{16} \) D.\( \frac{31}{16} \) AKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =1\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) CKąt \(\alpha \) jest ostry i \(\sin\alpha = 0{,}75\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) DKąt \(\alpha \) jest ostry oraz \(\sin \alpha =\cos 47^\circ \). Wtedy miara kąta \(\alpha \) jest równa. A.\( 6^\circ \) B.\( 33^\circ \) C.\( 47^\circ \) D.\( 43^\circ \) DKąt \( \alpha \) jest kątem ostrym i \( \operatorname{tg} \alpha =\frac{1}{2} \). Jaki warunek spełnia kąt \( \alpha \)? A.\(\alpha \lt 30^\circ \) B.\(\alpha =30^\circ \) C.\(\alpha =60^\circ \) D.\(\alpha >60^\circ \) AW trójkącie prostokątnym \( ABC \) odcinek \( AB \) jest przeciwprostokątną i \( |AB|=13 \) oraz \( |BC|=12 \) . Wówczas sinus kąta \( ABC \) jest równy. A.\(\frac{12}{13} \) B.\(\frac{5}{13} \) C.\(\frac{5}{12} \) D.\(\frac{13}{12} \) BKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{2}\). Wartość wyrażenia \(\cos^2\alpha -2\) jest równa A.\( -\frac{7}{4} \) B.\( -\frac{1}{4} \) C.\( \frac{1}{2} \) D.\( \frac{\sqrt{3}}{2} \) AWartość wyrażenia \(\sin^{2} 23^\circ +\sin^{2} 67^\circ \) jest równa: A.\( 2\sin^{2} 23^\circ \) B.\( 2\sin^{2} 67^\circ \) C.\( 1 \) D.\( 0 \) CKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{2}\). Oblicz wartość wyrażenia \(\sin^2\alpha - 3\cos^2\alpha \).\(0\)Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{1}{4}\). Oblicz \(3 + 2\operatorname{tg}^2\alpha \).\(3\frac{2}{15}\)Oblicz wartość wyrażenia \(\operatorname{tg}^2\alpha -3\cos ^2\alpha \), jeżeli \(\sin \alpha =\frac{\sqrt{3}}{2}\) i \(\alpha \) jest kątem ostrym.\(2\frac{1}{4}\)Kąty ostre \(\alpha \) i \(\beta \) trójkąta prostokątnego spełniają warunek \(\sin^{2} \alpha +\sin^{2}\beta +\operatorname{tg}^{2}\alpha =4\) . Wyznacz miarę kąta \(\alpha \).\(\alpha =60^\circ \)W trójkącie prostokątnym, w którym przyprostokątne mają długości \(2\) i \(4\), jeden z kątów ostrych ma miarę \(\alpha \). Oblicz \(\sin \alpha \cdot \cos \alpha \).\(\frac{2}{5}\)Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{1}{4}\). Oblicz \(3+2\operatorname{tg}^2\alpha \).\(\frac{47}{15}\)Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{3}\). Wtedy wartość wyrażenia \(2cos^2\alpha -1\) jest równa A.\( 0 \) B.\( \frac{1}{3} \) C.\( \frac{5}{9} \) D.\( 1 \) BW trójkącie prostokątnym długość jednej z przyprostokątnych jest równa \(7\), zaś długość przeciwprostokątnej jest równa \(8\). Zatem tangens mniejszego kąta ostrego w tym trójkącie jest równy: A.\( \frac{15}{7} \) B.\( \frac{8}{15} \) C.\( \frac{\sqrt{15}}{7} \) D.\( \frac{7\sqrt{15}}{15} \) CMaszt telekomunikacyjny rzuca cień, który jest \(2\) razy krótszy niż wysokość masztu. Oblicz cosinus kąta, pod jakim padają promienie słoneczne.\(\cos \alpha =\frac{\sqrt{5}}{5}\)W trójkącie prostokątnym o bokach \(6, 8, 10\), tangens najmniejszego kąta jest równy A.\(\frac{3}{4} \) B.\(1\frac{1}{3} \) C.\(\frac{3}{5} \) D.\(\frac{4}{5} \) AW trójkącie prostokątnym najdłuższy bok ma długość \(25\), a najkrótszy \(7\). Tangens najmniejszego kąta tego trójkąta jest równy: A.\(\frac{7}{24} \) B.\(\frac{24}{7} \) C.\(\frac{7}{25} \) D.\(\frac{24}{25} \) AJeżeli \( \alpha \) jest kątem ostrym oraz \( \operatorname{tg}{\alpha }=\frac{2}{5} \), to wartość wyrażenia \( \frac{3\cos{\alpha }-2\sin{\alpha }}{\sin{\alpha }-5\cos{\alpha }} \) jest równa A.\(-\frac{11}{23} \) B.\(\frac{24}{5} \) C.\(-\frac{23}{11} \) D.\(\frac{5}{24} \) AKąt \( \alpha \) jest ostry i spełniona jest równość \( 3\operatorname{tg}\alpha =2 \). Wtedy wartość wyrażenia \( \sin \alpha+\cos \alpha \) jest równa A.\(1 \) B.\(\frac{5\sqrt{13}}{26} \) C.\(\frac{5\sqrt{13}}{13} \) D.\(\sqrt{5} \) CKąt \( \alpha \) jest ostry oraz \( \frac{4}{\sin^2\!{\alpha }}+\frac{4}{\cos^2\!{\alpha }}=25 \). Oblicz wartość wyrażenia \( \sin{\alpha }\cdot \cos{\alpha } \). \(\frac{2}{5}\)Podstawą ostrosłupa \(ABCDS\) jest romb \(ABCD\) o boku długości \(4\). Kąt \(ABC\) rombu ma miarę \(120^\circ \) oraz \(|AS|=|CS|=10\) i \(|BS|=|DS|\). Oblicz sinus kąta nachylenia krawędzi \(BS\) do płaszczyzny podstawy ostrosłupa.\(\sin \alpha =\sqrt{\frac{22}{23}}\)
Funkcje trygonometryczne - odczytywanie z tablic wartości kątów. Typowe zadanie na maturę podstawową. Anna Zalewska: https://blog.etrapez.pl/o-nas/#anna-zale Powered by Paяabola & WordPress. ZADANIA - TRYGONOMETRIA sobota, 28 lipca 2018 Kąt alfa jest taki, że Oblicz wartośd wyrażenia Widząc takie zadanie, musimy zastanowić się chwilę, jakie twierdzenia możemy wykorzystać. Nie jest to byle jakie zadanie, pojawiło się na maturze w 2012 roku w czerwcu aż za 5 punktów!
W trójkącie prostokątnym dane są długości boków (zobacz rysunek). WtedyA. $\begin{gather*}\sin\alpha=\frac{\sqrt{5}}{3}\end{gather*}$B. $\begin{gather*}\cos\alpha=\frac{\sqrt{5}}{2}\end{gather*}$C. $\begin{gather*}\sin\alpha=\frac{2}{3}\end{gather*}$D. $\begin{gather*}\cos\alpha=\frac{\sqrt{5}}{3}\end{gather*}$ W trójkącie prostokątnym dane są długości boków (zobacz rysunek). WtedyA. $\begin{gather*}\sin\alpha=2\end{gather*}$B. $\begin{gather*}\cos\alpha=\frac{\sqrt{3}}{2}\end{gather*}$C. $\begin{gather*}\sin\alpha=\frac{\sqrt{3}}{3}\end{gather*}$D. $\begin{gather*}\cos\alpha=\frac{1}{2}\end{gather*}$ W trójkącie prostokątnym dane są długości boków (zobacz rysunek). WtedyA. $\begin{gather*}\sin\alpha=\frac{\sqrt{5}}{3}\end{gather*}$B. $\begin{gather*}\cos\alpha=\frac{2}{3}\end{gather*}$C. $\begin{gather*}\sin\alpha=\frac{2}{3}\end{gather*}$D. $\begin{gather*}\cos\alpha=\frac{\sqrt{5}}{2}\end{gather*}$ W trójkącie prostokątnym dane są długości boków (zobacz rysunek). WtedyA. $\begin{gather*}\sin\alpha=2\end{gather*}$B. $\begin{gather*}\cos\alpha=\sqrt{5}\end{gather*}$C. $\begin{gather*}\sin\alpha=\sqrt{5}\end{gather*}$D. $\begin{gather*}\cos\alpha=\frac{\sqrt{5}}{5}\end{gather*}$ W trójkącie prostokątnym dane są długości boków (zobacz rysunek). WtedyA. $\begin{gather*}\sin\alpha=\frac{3}{\sqrt{10}}\end{gather*}$B. $\begin{gather*}\cos\alpha=3\end{gather*}$C. $\begin{gather*}\hbox{tg } \alpha=\frac{\sqrt{10}}{3}\end{gather*}$D. $\begin{gather*}\hbox{tg } \alpha=\frac{1}{3}\end{gather*}$ Dla kąta ostrego $\alpha$, $\sin\alpha=\frac{1}{2}$. Wartość wyrażenia $1-2\cos^2\alpha$ jest równaA. $\frac{1}{2}$B. $-\frac{1}{2}$ C. $-\frac{\sqrt{2}}{2}$D. $\frac{\sqrt{2}}{2}$ Dla kąta ostrego $\alpha$, $\cos\alpha=\frac{\sqrt{2}}{2}.$ Wartość wyrażenia $\sin^2\alpha-3$ jest równaA. $\frac{5}{2}$B. $-\frac{3}{2}$ C. $-\frac{5}{2}$D. $\frac{\sqrt{2}}{2}$
Oryginalne zadania maturalne Centralnej Komisji Egzaminacyjnej. Zadanie 9.11. [matura, maj 2012, zad. ll. (l pkt)] W trójkqcie prostokqtnym ABC odcinek AB jest przeciwprostokqtnq i IABI 13 oraz IBCI — - 12. Wówczas sinus kQta ABC jest równy 12 zad. 16. zad. 28. (1 pkt)] 450 (2 pkt)] 13 12 D. a > 450 12 13 Zadanie 9.12. 13 [matura, czerwiec
Test:Trygonometria © 2022 | Wykonanie: SpaceLab
Matura 2012 czerwiec Różne zadania z trygonometrii Matura podstawowa z matematyki - kurs - trygonometria Matura podstawowa - kurs - część 39 - zadania Sąsiednie zadania Zadanie 283 Zadanie 284
Szybka nawigacja do zadania numer: 10 20 30 40 50 60 70 .W tym nagraniu wideo omawiam typowe zadanie z trygonometrii, w którym mamy daną wartość jednej funkcji trygonometrycznej, a musimy policzyć wartości wszystkich pozostałych funkcji tego typu można rozwiązywać na kilka różnych sposobów - np. korzystając z twierdzenia Pitagorasa, albo jedynki trygonometrycznej. Plusy i minusy każdej z tych metod omawiam w tym nagraniu nagrania: 13 \(\alpha \) jest ostry i \(\cos \alpha =\frac{3}{4}\). Wtedy \(\sin \alpha \) jest równy A.\( \frac{1}{4} \) B.\( \frac{\sqrt{3}}{4} \) C.\( \frac{\sqrt{7}}{4} \) D.\( \frac{7}{16} \) CKąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{3}{7}\). Wtedy A.\( \sin \alpha =\frac{2\sqrt{10}}{7} \) B.\( \sin \alpha =\frac{\sqrt{10}}{7} \) C.\( \sin \alpha =\frac{4}{7} \) D.\( \sin \alpha =\frac{3}{4} \) ASinus kąta ostrego \(\alpha \) jest równy \(\frac{3}{7}\). Wówczas cosinus tego kąta jest równy: A.\( \frac{4}{7} \) B.\( \frac{7}{4} \) C.\( \frac{2\sqrt{7}}{7} \) D.\( \frac{2\sqrt{10}}{7} \) DKąt \( \alpha \) jest ostry i \( \sin \alpha =\frac{1}{4} \). Wówczas A.\(\cos \alpha \lt \frac{3}{4} \) B.\(\cos \alpha =\frac{3}{4} \) C.\(\cos \alpha =\frac{\sqrt{13}}{4} \) D.\(\cos \alpha >\frac{\sqrt{13}}{4} \) DKąt \(\alpha\) jest ostry i \(\sin{\alpha}=\frac{4}{5}\). Wtedy \(\cos{\alpha }\) jest równy A.\( \frac{1}{5} \) B.\( \frac{2}{5} \) C.\( \frac{3}{5} \) D.\( \frac{4}{5} \) CKąt \(\alpha\) jest ostry i \(\cos \alpha = \frac{3}{4}\). Wtedy \(\sin \alpha\) jest równy A.\( \frac{1}{4} \) B.\( \frac{\sqrt{7}}{4} \) C.\( \frac{7}{16} \) D.\( \frac{\sqrt{7}}{16} \) BKąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{5}{13}\). Wtedy A.\( \sin \alpha =\frac{12}{13} \) oraz \(\operatorname{tg} \alpha =\frac{12}{5}\) B.\( \sin \alpha =\frac{12}{13} \) oraz \(\operatorname{tg} \alpha =\frac{5}{12}\) C.\( \sin \alpha =\frac{12}{5} \) oraz \(\operatorname{tg} \alpha =\frac{12}{13}\) D.\( \sin \alpha =\frac{5}{12} \) oraz \(\operatorname{tg} \alpha =\frac{12}{13}\) AKąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{4}{5}\). Oblicz \(\sin \alpha \) i \(\operatorname{tg} \alpha \).\(\sin \alpha =\frac{3}{5}\), \(\operatorname{tg} \alpha =\frac{3}{4}\)Kąt \(\alpha\) jest ostry i \(\sin\alpha =\frac{\sqrt{2}}{2} \). Wtedy \(\operatorname{tg}\alpha\) jest równy A.\( \frac{\sqrt{2}}{2} \) B.\( \frac{2}{\sqrt{2}} \) C.\( \sqrt{2} \) D.\( 1 \) DKąt \(\alpha \) jest ostry oraz \(\sin \alpha =\frac{2}{5}\). Wówczas A.\( \cos \alpha =\sin \alpha \) B.\( \cos \alpha >\sin \alpha \) C.\( \cos \alpha \lt \sin \alpha \) D.\( \cos \alpha =1-\sin \alpha \) BKąt \(\alpha \) jest ostry i \(\sin \alpha =0{,}6\). Wówczas A.\( \cos \alpha =0{,}8 \) i \(\operatorname{tg} \alpha =0{,}4\) B.\( \cos \alpha =0{,}4 \) i \(\operatorname{tg} \alpha =1{,}5\) C.\( \cos \alpha =0{,}8 \) i \(\operatorname{tg} \alpha =0{,}75\) D.\( \cos \alpha =0{,}4 \) i \(\operatorname{tg} \alpha =0{,}75\) CKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{7}{13}\). Wtedy \(\operatorname{tg} \alpha \) jest równy A.\( \frac{7}{6} \) B.\( \frac{7\cdot 13}{120} \) C.\( \frac{7}{\sqrt{120}} \) D.\( \frac{7}{13\sqrt{120}} \) CKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =\frac{12}{5}\). Wówczas \(\cos \alpha \) jest równy: A.\( \frac{5}{12} \) B.\( \frac{5}{13} \) C.\( \frac{10}{13} \) D.\( \frac{12}{13} \) BKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =\frac{5}{12}\). Oblicz \(\cos \alpha \).\(\cos \alpha =\frac{12}{13}\)Przyprostokątne trójkąta prostokątnego mają długości \(3\) i \(9\). Sinus najmniejszego kąta tego trójkąta jest równy: A.\( \frac{3\sqrt{10}}{10} \) B.\( \frac{1}{3} \) C.\( \frac{\sqrt{10}}{10} \) D.\( \frac{\sqrt{10}}{30} \) CKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =2\). Oblicz \(\frac{\sin \alpha -\cos \alpha }{\sin \alpha +\cos \alpha }\).\(\frac{1}{3}\)Przyprostokątne trójkąta prostokątnego mają długości \(8\) i \(6\). Sinus większego z kątów ostrych tego trójkąta jest równy A.\( \frac{3}{5} \) B.\( \frac{3}{4} \) C.\( \frac{4}{5} \) D.\( \frac{4}{3} \) CW trójkącie równoramiennym wysokość jest dwa razy dłuższa od podstawy. Wynika stąd, że sinus kąta przy podstawie wynosi: A.\( \frac{\sqrt{17}}{17} \) B.\( \frac{\sqrt{5}}{5} \) C.\( \frac{4\sqrt{17}}{17} \) D.\( \frac{1}{17} \) CLiczba \(\sin 60^\circ +\cos 60^\circ \) jest równa A.\( 1 \) B.\( -\frac{\sqrt{3}}{2} \) C.\( \frac{\sqrt{3}+1}{2} \) D.\( \frac{2\sqrt{3}-3}{6} \) CLiczba \( \operatorname{tg} 30^\circ -\sin 30^\circ \) jest równa A.\(\sqrt{3}-1 \) B.\(-\frac{\sqrt{3}}{6} \) C.\(\frac{\sqrt{3}-1}{6} \) D.\(\frac{2\sqrt{3}-3}{6} \) DKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{3}{4}\). Wartość wyrażenia \(2-\cos ^2\alpha \) jest równa A.\( \frac{25}{16} \) B.\( \frac{3}{2} \) C.\( \frac{17}{16} \) D.\( \frac{31}{16} \) AKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =1\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) CKąt \(\alpha \) jest ostry i \(\sin\alpha = 0{,}75\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) DKąt \(\alpha \) jest ostry oraz \(\sin \alpha =\cos 47^\circ \). Wtedy miara kąta \(\alpha \) jest równa. A.\( 6^\circ \) B.\( 33^\circ \) C.\( 47^\circ \) D.\( 43^\circ \) DKąt \( \alpha \) jest kątem ostrym i \( \operatorname{tg} \alpha =\frac{1}{2} \). Jaki warunek spełnia kąt \( \alpha \)? A.\(\alpha \lt 30^\circ \) B.\(\alpha =30^\circ \) C.\(\alpha =60^\circ \) D.\(\alpha >60^\circ \) AW trójkącie prostokątnym \( ABC \) odcinek \( AB \) jest przeciwprostokątną i \( |AB|=13 \) oraz \( |BC|=12 \) . Wówczas sinus kąta \( ABC \) jest równy. A.\(\frac{12}{13} \) B.\(\frac{5}{13} \) C.\(\frac{5}{12} \) D.\(\frac{13}{12} \) BKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{2}\). Wartość wyrażenia \(\cos^2\alpha -2\) jest równa A.\( -\frac{7}{4} \) B.\( -\frac{1}{4} \) C.\( \frac{1}{2} \) D.\( \frac{\sqrt{3}}{2} \) AKąt \(\alpha \) jest ostry i \(\cos \alpha =0{,}9\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) AKąt \(\alpha \) jest ostry i \(\sin \alpha =0{,}8\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) DKąt \(\alpha \) jest ostry i \(\sin \alpha = \cos \alpha \). Wówczas A.\( \alpha =30^\circ \) B.\( \alpha =45^\circ \) C.\( \alpha =60^\circ \) D.\( \alpha =90^\circ \) BWartość wyrażenia \(\sin^{2} 23^\circ +\sin^{2} 67^\circ \) jest równa: A.\( 2\sin^{2} 23^\circ \) B.\( 2\sin^{2} 67^\circ \) C.\( 1 \) D.\( 0 \) CKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{2}\). Oblicz wartość wyrażenia \(\sin^2\alpha - 3\cos^2\alpha \).\(0\)Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{1}{4}\). Oblicz \(3 + 2\operatorname{tg}^2\alpha \).\(3\frac{2}{15}\)Oblicz wartość wyrażenia \(\operatorname{tg}^2\alpha -3\cos ^2\alpha \), jeżeli \(\sin \alpha =\frac{\sqrt{3}}{2}\) i \(\alpha \) jest kątem ostrym.\(2\frac{1}{4}\)Kąty ostre \(\alpha \) i \(\beta \) trójkąta prostokątnego spełniają warunek \(\sin^{2} \alpha +\sin^{2}\beta +\operatorname{tg}^{2}\alpha =4\) . Wyznacz miarę kąta \(\alpha \).\(\alpha =60^\circ \)W trójkącie prostokątnym, w którym przyprostokątne mają długości \(2\) i \(4\), jeden z kątów ostrych ma miarę \(\alpha \). Oblicz \(\sin \alpha \cdot \cos \alpha \).\(\frac{2}{5}\)W trójkącie prostokątnym przyprostokątne mają długość \(a\) i \(b\), zaś naprzeciw boku \(a\) znajduje się kąt ostry \(\alpha\). Wykaż, że jeśli \(\operatorname{tg} \alpha = 2,\) to:\[\frac{(a+b)\cdot b}{a^2-b^2}=1\]Uzasadnij, że jeżeli \(\alpha\) jest kątem ostrym, to \(\sin^4\alpha + \cos^2\alpha = \sin^2\alpha + \cos^4\alpha\).Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{1}{4}\). Oblicz \(3+2\operatorname{tg}^2\alpha \).\(\frac{47}{15}\)W trójkącie prostokątnym jedna z przyprostokątnych ma długość \(a\). Kąt ostry przy tym boku ma miarę \(\alpha \). Wykaż, że \(\sin \alpha +\cos \alpha >1\).Kąt \(\alpha \) jest ostry i \(\frac{\sin \alpha }{\cos \alpha }+\frac{\cos \alpha }{\sin \alpha }=2\). Oblicz wartość wyrażenia \(\cos \alpha \cdot \sin \alpha \).\(\frac{1}{2}\)Rozwiąż równanie \(\cos 2x + \cos x + 1 = 0\) dla \(x\in \langle 0,2\pi \rangle\).\(x=\frac{\pi }{2}\) lub \(x=\frac{3\pi }{2}\) lub \(x=\frac{2\pi }{3}\) lub \(x=\frac{4\pi }{3}\)Rozwiąż równanie \(\cos2x + 2 = 3\cos x\).\(x=\frac{\pi }{3}+2k\pi \) lub \(x=-\frac{\pi }{3}+2k\pi \) lub \(x=2k\pi \) gdzie \(k\in \mathbb{Z} \)Podstawą ostrosłupa \(ABCDS\) jest romb \(ABCD\) o boku długości \(4\). Kąt \(ABC\) rombu ma miarę \(120^\circ \) oraz \(|AS|=|CS|=10\) i \(|BS|=|DS|\). Oblicz sinus kąta nachylenia krawędzi \(BS\) do płaszczyzny podstawy ostrosłupa.\(\sin \alpha =\sqrt{\frac{22}{23}}\)Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{3}\). Wtedy wartość wyrażenia \(2cos^2\alpha -1\) jest równa A.\( 0 \) B.\( \frac{1}{3} \) C.\( \frac{5}{9} \) D.\( 1 \) BW trójkącie prostokątnym długość jednej z przyprostokątnych jest równa \(7\), zaś długość przeciwprostokątnej jest równa \(8\). Zatem tangens mniejszego kąta ostrego w tym trójkącie jest równy: A.\( \frac{15}{7} \) B.\( \frac{8}{15} \) C.\( \frac{\sqrt{15}}{7} \) D.\( \frac{7\sqrt{15}}{15} \) CMaszt telekomunikacyjny rzuca cień, który jest \(2\) razy krótszy niż wysokość masztu. Oblicz cosinus kąta, pod jakim padają promienie słoneczne.\(\cos \alpha =\frac{\sqrt{5}}{5}\)W trójkącie prostokątnym o bokach \(6, 8, 10\), tangens najmniejszego kąta jest równy A.\(\frac{3}{4} \) B.\(1\frac{1}{3} \) C.\(\frac{3}{5} \) D.\(\frac{4}{5} \) AW trójkącie prostokątnym najdłuższy bok ma długość \(25\), a najkrótszy \(7\). Tangens najmniejszego kąta tego trójkąta jest równy: A.\(\frac{7}{24} \) B.\(\frac{24}{7} \) C.\(\frac{7}{25} \) D.\(\frac{24}{25} \) AJeżeli \( \alpha \) jest kątem ostrym oraz \( \operatorname{tg}{\alpha }=\frac{2}{5} \), to wartość wyrażenia \( \frac{3\cos{\alpha }-2\sin{\alpha }}{\sin{\alpha }-5\cos{\alpha }} \) jest równa A.\(-\frac{11}{23} \) B.\(\frac{24}{5} \) C.\(-\frac{23}{11} \) D.\(\frac{5}{24} \) AKąt \( \alpha \) jest ostry i spełniona jest równość \( 3\operatorname{tg}\alpha =2 \). Wtedy wartość wyrażenia \( \sin \alpha+\cos \alpha \) jest równa A.\(1 \) B.\(\frac{5\sqrt{13}}{26} \) C.\(\frac{5\sqrt{13}}{13} \) D.\(\sqrt{5} \) CKąt \( \alpha \) jest ostry oraz \( \frac{4}{\sin^2\!{\alpha }}+\frac{4}{\cos^2\!{\alpha }}=25 \). Oblicz wartość wyrażenia \( \sin{\alpha }\cdot \cos{\alpha } \). \(\frac{2}{5}\)Dla każdego kąta ostrego \(\alpha \) wyrażenie \(\sin^{2} \alpha +\sin^{2} \alpha \cdot \cos^{2}\alpha + \cos^{4}\alpha\) jest równe A.\( 2\sin^{2} \alpha \) B.\( 2\cos^{2}\alpha \) C.\( 1 \) D.\( 2 \) CKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{1}{3}\). Wartość wyrażenia \(1+\operatorname{tg} \alpha \cdot \cos \alpha \) jest równa A.\( \frac{4}{3} \) B.\( \frac{11}{9} \) C.\( \frac{17}{9} \) D.\( \frac{11}{3} \) AKosinus kąta ostrego rombu jest równy \(\frac{\sqrt{3}}{2}\), bok rombu ma długość \(3\). Pole tego rombu jest równe A.\( \frac{9}{2} \) B.\( \frac{9\sqrt{3}}{4} \) C.\( \frac{9\sqrt{3}}{2} \) D.\( 6 \) APrzyprostokątne w trójkącie prostokątnym mają długości \(1\) oraz \(\sqrt{3}\). Najmniejszy kąt w tym trójkącie ma miarę A.\( 60^\circ \) B.\( 30^\circ \) C.\( 45^\circ \) D.\( 15^\circ \) BKąt \(\alpha\) jest ostry i \(\cos\alpha = \frac{\sqrt{7}}{4}\). Oblicz wartość wyrażenia \(2+\sin^3\!\alpha +\sin\alpha \cdot \cos^2\!\alpha\).\(2\frac{3}{4}\)Na płaszczyźnie dane są punkty \( A=( \sqrt{2}, \sqrt{6} ) \text{, }\ B=(0, 0) \text{ i }\ C=(\sqrt{2}, 0)\) . Kąt \( BAC \) jest równy A.\(30^\circ \) B.\(45^\circ \) C.\(60^\circ \) D.\(75^\circ \) ALiczba \( \sin 150^\circ \) jest równa liczbie A.\( \cos 60^\circ \) B.\( \cos 120^\circ \) C.\( \operatorname{tg} 120^\circ \) D.\( \operatorname{tg} 60^\circ \) AJeżeli kąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =\frac{3}{4}\), to \(\frac{2-\cos \alpha }{2+\cos \alpha }\) równa się A.\( -1 \) B.\( -\frac{1}{3} \) C.\( \frac{3}{7} \) D.\( \frac{84}{25} \) CW trójkącie, przedstawionym na rysunku poniżej, sinus kąta ostrego \(\alpha \) jest równy A.\( \frac{1}{5} \) B.\( \frac{\sqrt{6}}{12} \) C.\( \frac{5}{24} \) D.\( \frac{2\sqrt{6}}{5} \) DW układzie współrzędnych zaznaczono kąt \(\alpha \). Jedno z ramion kąta \(\alpha \) przechodzi przez punkt \(P=(-4,3)\). Wtedy: A.\( \cos \alpha = \frac{4}{5} \) B.\( \cos \alpha = -\frac{4}{5} \) C.\( \cos \alpha = -\frac{4}{3} \) D.\( \cos \alpha = -\frac{3}{4} \) BJeżeli \(0^\circ \lt \alpha \lt 90^\circ \) oraz \(\operatorname{tg} \alpha =2\sin \alpha \), to A.\( \cos \alpha =\frac{\sqrt{2}}{2} \) B.\( \cos \alpha =\frac{1}{2} \) C.\( \cos \alpha =1 \) D.\( \cos \alpha =\frac{\sqrt{3}}{2} \) BDrabinę o długości \(4\) metrów oparto o pionowy mur, a jej podstawę umieszczono w odległości \(1{,}30\) m od tego muru (zobacz rysunek). Kąt \(\alpha \), pod jakim ustawiono drabinę, spełnia warunek A.\( 0^\circ \lt \alpha \lt 30^\circ \) B.\( 30^\circ \lt \alpha \lt 45^\circ \) C.\( 45^\circ \lt \alpha \lt 60^\circ \) D.\( 60^\circ \lt \alpha \lt 90^\circ \) DKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{2}{5}\). Wówczas \(\cos \alpha \) jest równy A.\( \frac{5}{2} \) B.\( \frac{\sqrt{21}}{4} \) C.\( \frac{3}{5} \) D.\( \frac{\sqrt{21}}{5} \) DRównanie \(2\sin x+3\cos x=6\) w przedziale \((0,2\pi )\) ma rozwiązań rzeczywistych. dokładnie jedno rozwiązanie rzeczywiste. dokładnie dwa rozwiązania rzeczywiste. więcej niż dwa rozwiązania rzeczywiste. ASinus kąta ostrego \(\alpha \) jest równy \(\frac{3}{4}\). Wówczas A.\( \cos \alpha =\frac{1}{4} \) B.\( \cos \alpha =\frac{\sqrt{7}}{4} \) C.\( \cos \alpha =\frac{7}{16} \) D.\( \cos \alpha =\frac{\sqrt{13}}{16} \) BW trójkącie prostokątnym o długościach przyprostokątnych \(2\) i \(5\) cosinus większego z kątów ostrych jest równy A.\( \frac{5}{2} \) B.\( \frac{2}{5} \) C.\( \frac{2}{\sqrt{29}} \) D.\( \frac{5}{\sqrt{29}} \) CKąt \(\alpha \) jest ostry i spełnia równość \(\operatorname{tg} \alpha +\frac{1}{\operatorname{tg} \alpha }=\frac{7}{2}\). Oblicz wartość wyrażenia \(\sin \alpha \cdot \cos \alpha \).\(\frac{2}{7}\)Kąt \(\alpha \) jest ostry oraz \(3\sin \alpha -\sqrt{3}\cos \alpha =0\). Wtedy A.\( \operatorname{tg} \alpha =\frac{1}{3} \) B.\( \operatorname{tg} \alpha =3 \) C.\( \operatorname{tg} \alpha =\sqrt{3} \) D.\( \operatorname{tg} \alpha =\frac{\sqrt{3}}{3} \) DKąt \(\alpha \in (0^\circ , 180^\circ )\) oraz wiadomo, że \(\sin \alpha \cdot \cos \alpha =-\frac{3}{8}\). Wartość wyrażenia \((\cos \alpha -\sin \alpha )^2+2\) jest równa A.\( \frac{15}{4} \) B.\( \frac{9}{4} \) C.\( \frac{27}{8} \) D.\( \frac{21}{8} \) Wartość wyrażenia \(2\sin^{2} 18^\circ +\sin^{2} 72^\circ +\cos^{2} 18^\circ \) jest równa A.\( 0 \) B.\( 1 \) C.\( 2 \) D.\( 4 \) Zagadnienia, które omawiam w tej części kursu: Odnajdywanie trójkątów prostokątnych w graniastosłupach. Odnajdywanie trójkątów prostokątnych w ostrosłupach. Obliczanie poszczególnych długości oraz miar brył z wykorzystaniem funkcji trygonometrycznych. 00:00. 00:00. Zbiór zadań do tej części kursu: POMOCY Mariolaa: Godzio a ja mogę Cię poprosic o jakies zadania maturalne z trygonometrii? 14 sie 17:06 Godzio: podstawa / rozszerzenie ? 14 sie 17:14 damian: Co prawda nie jestem Godzio ale zadanie jest wg mnie warte uwagi: Wyznacz najmniejszą wartość (ctg2x−tg2x)*sin22x funkcji f(x)= 4cos2x*sin2x 14 sie 17:16 Godzio: To wyrażenie w ogóle osiąga wartość najmniejszą? 14 sie 17:35 Mariolaa: podstawowa 14 sie 17:54 Bogdan: To wyrażenie posiada wartość najmniejszą. 14 sie 18:01 Godzio: 1. Oblicz: a) (cos45 − cos30)(cos45 + cos30) b) 4(ctg45 + sin60)(cos30 + tg45) c) (sin45 + ctg45)(6 * sin60 − ctg30) 2. Oblicz pozostałe wartości funkcji trygonometrycznych wiedząc że: a) ctgx = 3 x ∊ (0,90) Tyle na początek 14 sie 18:07 Mariolaa: 1) (√2przez 2 − √3 przez 2) (√2przez 2 + √3 przez 2) = (√2przez 2)2 −(√3przez 2)2= 2 przez 4 − 3/4 = −1/4 14 sie 19:30 Kejt: Mariolu. zapisuj to tak: U{...} {...} usuń tylko spację ze środka, a w miejsce kropek wpisz liczby. Wyjdzie Ci wtedy ułamek.. 14 sie 19:32 Mariolaa: 2) 4(1+ √3/2)(√3/2+1)=4(1+ √3/2)(1−√3/2)= 4(1)2−(√3/2)2= 4*1− 3/4= 5−3/4 =5/4 14 sie 19:45 Mariolaa: dzięki uzyje tego w nastepnym zadaniu 14 sie 19:46 Godzio: 2) coś Ci źle wyszło popraw zauważ że masz: √3 √3 √3 4(1 + )( + 1) = 4(1 + )2 = ... 2 2 2 14 sie 20:35 Godzio: a możesz jeszcze wciągnąć tą 4 do nawiasu √3 22 * (1 + )2 = (2 + √3)2 = ... 2 teraz to pikuś 14 sie 20:37 Mariolaa: 22+2*2*√3+√32= 4+4√3+3=11√3 14 sie 20:55 Mariolaa: a drugie zadanie mi wyszło po podstawieniu tg=13, sin= √1010 cos= 13√1010 14 sie 21:01 Kejt: nie możesz tak dodać.. 4+3+4√3=7+4√3 14 sie 21:02 Godzio: 3√10 ok tylko przy cosx = 10 14 sie 21:07 Mariolaa: sin 513 cos 12 tg 221156 ctg 14 sorrki ze tak pozno ale problem z internetem miałam 16 sie 16:03 Godzio: nie ma problemu, ale chyba coś nie tak, pomyśl jeszcze 16 sie 16:52 Mariolaa: a tego nie wiem jak zrobic 16 sie 16:54 Mariolaa: tzn która odp jest zła? 16 sie 16:55 Mariolaa: a cos zle i i reszta zle powinno być 144169 tak? 16 sie 16:59 Godzio: jeśli cos wyszedł Ci 12 to chyba coś nie tak prawda ? 16 sie 17:00 Godzio: Sposób I : sin2x + cos2x = 1 sinx 5 13 5 tgx = = * = cosx 13 12 12 Sposób II −− rysunek 5 zaznaczamy na rysunku α i zgodnie z danymi zaznaczamy boki sinα = 13 x2 + 52 = 132 x2 = 144 x = 12 I tera już odczytujemy pokolei funcje 16 sie 17:03 Mariolaa: ooo rany niby proste a ja się nie mogę zabrac za to 16 sie 17:05 Godzio: pokazać 1. c) czy jeszcze walczysz ? 16 sie 17:06 Mariolaa: taak taak zagalopowałam się troszke z tym cosinusem hehe 16 sie 17:06 Mariolaa: probuje ale z moją błyskotliwością sądze ze mi nie wyjdzie hee 16 sie 17:07 Godzio: To poczekamy jeszcze, podstaw poupraszczaj to co się da w nawiasach i na końcu przemnóż 16 sie 17:10 Mariolaa: nie wychodzi. prosze o pomoc 16 sie 17:28 Godzio: √2 √3 √2 ( + 1)(6 * − √3) = ( + 1) * (3√3 − √3 ) = 2 2 2 √2 = ( + 1) * 2√3 = √6 + 2√3 2 16 sie 17:47 Mariolaa: a ja kombinowałam jak podstawic do wzoru matematyka nie jest na moją głowe 16 sie 17:56 Mariolaa: dasz mi jeszcze jakies przykłady czy masz dośc takich jak ja hihi 16 sie 17:59 Godzio: Ważne że próbujesz To może teraz coś z tożsamości: 1. Sprawdź czy podane równości są tożsamościami, podaj założenia ctgx b)cosx + cosx * ctg2x = sinx 2. Zapisz wyrażenia w najprostszej postaci: a) (cosx + tgx * sinx) * ctgx 3. Oblicz: a) sin275 + sin215 − 2sin30 −−− mam nadzieję że umiesz posługiwać się wzorami redukcyjnymi 16 sie 18:01 Godzio: Mam dość leniów, a nie tych którzy chcą się czegoś nauczyć 16 sie 18:02 Godzio: zad. 1 tgx a) powinno być cosx * sinx 16 sie 18:03 Mariolaa: a tożsamości nie są na rozszerzonym? 16 sie 18:04 Godzio: wracam za jakieś 20 min i sprawdzę Twoje rozwiązania 16 sie 18:04 Godzio: być może ale to jak chcesz to zrób w takim razie 2 i 3 jeśli nie chcesz tożsamości 16 sie 18:05 Mariolaa: 2) a cos*sin*tg*ctg2 b 1−cos*tgsin 16 sie 18:39 16 sie 18:40 Godzio: tgx * ctgx = 1 sinx a) (cosx + tgx * sinx) * ctgx = cosx * ctgx + tgx * ctgx * sinx = cosx * + cosx sinx = sinx + sinx = 2sinx 16 sie 18:41 Godzio: tak ale nie dla (90o + α) i (90o − α) −to jest na 100% na podstawie 16 sie 18:46 Godzio: cosx cos2x + sin2x 1 tak się pomyliłem cosx * + sinx = = sinx sinx sinx 16 sie 18:48 Godzio: nad b) pomyśl jeszcze 16 sie 18:48 Mariolaa: a skąd Ci się wzięło cosx* sinxcosx 16 sie 18:52 Godzio: cosx napisałem nieco wyżej ze mialo byc cosx* sinx 16 sie 18:59 Mariolaa: pogmatwałam sie całkowicie pomyliłes sie w pierwszym a ja robiłam 2 17 sie 18:37 Mariolaa: a tego 3 nie wiem jak rozgryzc 17 sie 18:37 Godzio: sin215 = sin2(90 − 75) = cos275, a teraz ? 17 sie 18:42 Mariolaa: kurcze ja w ogole nie wiem o co chodzi w tych wzorach 17 sie 19:13 Godzio: a przerabiałaś w ogóle trygonometrię w szkole ? 17 sie 19:17 Mariolaa: no tak 17 sie 19:21 Godzio: i nie miałaś podstawowych wzorów redukcyjnych ? 17 sie 19:22 Mariolaa: jeszcze specjalnie przeglądnęłam zeszyty bo swojej pamieci nie zawsze do konca ufam i nie miałam 17 sie 19:30 Godzio: no to kicha a powinnaś to mieć 17 sie 19:31 Mariolaa: porazka 17 sie 19:34 . 183 213 493 233 304 185 1 354

zadania z trygonometrii matura podstawowa